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A COMPUTER PROGRAM FOR SYSTEMATICALLY ANALYZING
FREE-FLIGHT DATA TO DETERMINE THE AERODYNAMICS
OF AXISYMMETRIC BODIES
By Gerald N. Malcolm and Gary T. Chapman

Ames Research Center
SUMMARY

The computer program analyzes free-flight motions of axisymmetric bodies
to deduce coefficients of drag, 1lift, and static and dynamic stability from
any set of free-flight data complete enough to define the trajectory and angle
history. Nonlinear behavior can be accurately assessed from the results of
the data-reduction program, and available methods are discussed. To demon-
strate the effectiveness of the data-reduction method, free-flight tests of
the AGARD standard hypersonic ballistic correlation model HB-2 were conducted.
The results for 1lift and static and dynamic stability at a Mach nuwmber of 2
agreed well with conventional wind-tunnel results. Significant differences
were found in the drag data because of different base pressures believed due
to sting effects in the wind-tunnel tests.

INTRODUCTION

Free-flight technigues have been used at Ames Research Center, in both
ballistic ranges and counterflow facilities, to obtain aerodynamic characteris-
tics of many types of configurations. In past years, raw data were reduced
principally for drag and stability and only occasionally for 1ift. The
procedures involved several computer programs and a substantial amount of
manual calculation.

Recently, a Fortran IV computer program was developed to systematize the
data-reduction procedure and eliminate all manual calculations. The program
produces in one operation a set of gquasi-linear values® for the aerodynamic
coefficients of drag, lift, and static and dynamic stability. Improved proce-
dures have been incorporated to calculate drag coefficients, and the method of
determining 1ift and stability coefficients has been modified to reduce errors.

To demonstrate the effectiveness of the data-reduction method, it is
applied to free-flight data from tests of the AGARD standard hypersonic

1The values are termed "quasi-linear" since the equations of motion that
are solved explicitly assume the static forces and moments are either constant
or vary linearly with angle of attack and dynamic forces and moments vary
linearly with angular rate.



ballistic correlation model HB-2, and the results are compared with
conventional wind-tumnel results (refs. 1-3).
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SYMBOLS

2
reference area, I

drag coefficient, drag N
qu

1ift coefficient, llfz
s

oC
lift-curve slope, —55

trim 1ift and side -force coefficients at x = O

93¢y,
Magnus force, )
d (P—j da.
Vv
ocy, acy,
1ift due to pitching and plunging, <é§> <

pitching moment

pitching-moment coefficient,

%”Ad
guasi-linear value of pitching-moment-curve slope
o°Cy,

Magnus moment (static), pd

3 da
Magnus moment (dynamic), <pd> <qd> <pd> <ocd>

3Cy

damping-in-pitch derivative, <?§> <éé>

normal force
gwA
reference length (diameter of cylinder of AGARD model)

normal -force coefficient,

gravitational constant, 32.15 ft/sec?



Iy moment of inertia about the axis of symmetry

Iy moment of inertia about a transverse axis through the center of
gravity

Ki,2,3 constants in equation (4)

m mass of model

M Mach number

P roll rate about axis of symmetry of model (positive clockwise
looking from rear)

o] pitching velocity

q, free-stream dynamic pressure

R Reynolds nunber based on d and free-stream conditions

s true distance along the flight path

t flight time

A velocity along flight path

b'd range coordinate in direction of flight path

¥ horizontal range coordinate perpendicular to x and z axes

z vertical range coordinate perpendicular to x and y axes

a angle of attack (in the vertical plane)

Clyp average value of maximum-~-angle envelope

Umin average value of minimum-angle envelope

1 [*e

s root-mean~-square angle of attack, / . J; aRp dx

oR small-angle approximation to resultant angle of attack,~f&?_1_E§

aR resultant angle of attack, tan™t Jtan® o + tan® B

B angle of sideslip (in the horizontal plane)

1,2 damping exponents in equation (4)

6 angular displacement measured in the =xz plane



. - d\F
E dynamic-stability parameter, Cp - CLa + <é> <?mq + Cmé)

p free-stream air density

(o] radius of gyration about a transverse axis through the center of

gravity of a model

0 angle of rotation of range coordinate axes about the x axis
r angular displacement measured in the xy plane
W1,2 rates of rotation of vectors that describe the model oscillatory

motion in equation (4)

DATA-REDUCTION SYSTEM

To obtain aerodynamic coefficients from a free-flight test, the basic
data necessary for analysis are position of the center of gravity, angular

orientation, and time at various points along the trajectory.

The earth-fixed

orthogonal coordinate system in which these data are desired is shown in fig-

ure 1.

Other requirements are a knowledge of the mass, moments of inertia,

center-of-gravity location, and geometric characteristics of the model,

y /
/
/

Xg

x — axis in direction of flight \
y — horizontal axis (positive right) \
z - vertical axis (positive down) \
Xg~ axis through ¢ of body \
8 - projection of angle xgo x in x-z plane -y
- projection of angle xgox in x-y plane

p- roll rate about xg axis z

Figure 1.- Earth-fixed orthogonal coordinate
system.

together with the physical properties
of the test gas into which the model
is fired.

The data-reduction program
includes the following routines:

1. Convert raw measurements into
earth-fixed orthogonal coordinates

2. Determine drag coefficient
and gravity correctious

3. Determine static and dynamic-
stablility coefficients

k. Rotate orthogonal coordinate
system

5. Determine 1ift coefficients

6. Correct measured angles for
flight-path swerve

A description of each of these routines and their dependence on one another

will be given.
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Obtaining Measurements in Earth-Fixed
Orthogonal Coordinate System

The raw measurements obtained from a particular facility must be proc-
essed to whatever extent necessary to express them in a set of earth-fixed
orthogonal coordinates. This procedure depends on the fiduciary system of the
test facility from which the data were obtained and would be bypassed if the
data were in the proper coordinates initially.

Drag and Corrections for Gravity

The drag coefficient is obtained directly from the flight time and dis-
tance measurements by using a high-precision least-squares curve-fitting pro-
cedure (see appendix A). The equation relating time and distance can be
written (ref. U4):

1 eKCDX

© = %o " yxep * voKCp (1)

where t = toand V=V, at x =0 and K = pA/2m. The parameters Cp, Vo,
and t, are determined to give the "best" fit to the experimental values of x
and t. Once these coefficients have been determined, the position and angular
measurements in the vertical plane are corrected to account for the influence
of gravity. A procedure is also available for eliminating erroneous time
measurements (discussed in appendix A).

To this point, the drag coefficient has been assumed to be constant for a
given flight (or segment of flight) and not a function of angle of attack.
What has been determined is really an effective drag coefficient over the
angle-of-attack range encountered in a given flight. From several flights at
different amplitudes, the dependence of drag on angle of attack can be deter-
mined. Tor most bodles of revolution, the drag as a function of angle of
attack can be expressed as

_ -2
Cp = CDO + Ciog (2)

where Cp, 1s the zero-angle drag coefficient and R 1is the resultant angle
of attack. It can be shown (ref. 5) that the effective drag coefficient we
have determined is

+ Ciad
CDeff CDO 10ms (3)

where

2 1 * 5
ST



From equations (2) and (3), then, Cp.pe 1is the value of Cp that occurs at a
resultant angle of attack equal to the root-mean-square resultant angle of
attack of the flight in question. Therefore, for each flight or flight seg-
ment, one obtalns a value for CDegrp @nd arms. If these points are plotted as
CDeff Versus afms and a straight line is fitted to them by least squares,
values for Cp, and Cp are obtained, and one then has an expression for Cp

versus angle of attack.

If the drag coefficient cannot be expressed as a quadratlc function of
angle of attack but is, instead, of the form Cp = CD + CglaRl , then the
angle of attack at which the effective drag coeff1c1ent should be plotted is

b/;xlaﬁlndx 1/n

el

and

-
CDypp = CODy + C29R (ref. 6)

The best value of n 1is found by a trial-and-error process.

Static and Dynamic Stability

Stability coefficients are determined from the oscillatory history of the
model. The well-known tricyclic equation derived by Nicolaides (ref. 7), mod-
ified to use distance rather than time as the independent variable, is used to
analyze the angular motion (see appendix B). Distance is used as the indepen-
dent variable because it essentially eliminates (to terms of second order) the
dependence of the calculations on velocity variation and hence is more conve-
nient. The important assumptions of this method are linear aerodynamics;
small angles; constant roll rate; small agsymmetries, mass and configurational;
and small velocity change. The modified equation is

B + ia = Kle(ﬂ1+lw1)x + Kze(ﬂ2'lw2)x + Kselpx (1)

where
Ki = Dby + iaq

Ko bo + iao

It

Kz = bsg + ias

(wy - wz)(Iy/Ix)

b

A least-squares procedure using differential corrections (ref. 8) is used to
fit equation (4) to the experimental data, o and B. The ten constants b1, ai,
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bz, az, bz, asz, M1, Wi, N2, and wWs are determined from the fit. As shown in
appendix B, when the Magnus moments can be ignored (generally, the case for
most ballistic-range tests unless the model is deliberately spun), the con-
stants mMi, N2, w1, and wo are related as follows:

Wy _ N1 + (DA/2m)GLa
Wa N2 + (DA/gm)CLa

(5)

where CILg is the lift-curve slope. Because w3 and Ws are easier to deter-
mine accurately, 7o can be written as a function of 731, w1, and ws, thereby
reducing the number of unknown coefficients to nine (CLa must be known and
its determination will be discussed later). If p (the roll rate of the model
about its own axis, assumed constant) can be measured in flight, w; and Wws

are not independent of one another and the number of coefficients is reduced
to eight. The aerodynamic parameters of static and dynamic stability are
related to the determined coefficients as follows: The quasi-linear pitching-
moment -curve slope, Cmaz’ is related to w; and wo as

-2T
CmOLZ = _ggg Wils (6)

and the dynamic-stability parameter, &, where £ = Cp - Crg + (d/G)Z(Cmq + Cmg,)
(ref. 9) is related to my and 7o as

L b =)
£ = on/om (7)

The remaining six coefficients, aji and bj, along with 71 and 1o, describe the
envelope of oscillatory motion for the particular flight being analyzed.

The assumption of linear aerodynamics, that is, static forces and moments
that vary linearly with angle of attack and dynamic forces and moments that
vary linearly with angular rates, does not prevent the use of the method for
bodies with nonlinear stability coefficients. In such cases, the method is
used to reduce data from several flights or portions of flights at different
amplitudes. These quasi-linear values for various angle-of-attack amplitudes
are then used to obtain the desired coefficients as functions of angle of
attack. The method of obtaining nonlinear pitching moments from quasi-linear
data is derived in reference 10 and illustrated in some detail in reference 11.
Basically, for a pitching-moment equation of the form

-Cp = Pox + Pra® + paa® + paa* + pac® + psa® + pea’ - - - (8)

the equation for the quasi-linear value of the pitching-moment-curve slope,
Cmaz’ can be written



- g 3 8 1 8 2
Cmg, = Po * 3 Pib + g pec + 3 pad + 95 Pec + 7 DT+ o5 Deg ¢ - - (9)

where

0]
I

m
1l

and oy and oyipn are the
regpectively, in the a-B

Q

/am

Sketch (a)

QAmin

ai + aain _ (dﬁ + aﬁin>5/2
2

2

(Gi - Gﬁin)z

7a§ + lOaégﬁin + 70‘I‘Iﬁin

aﬁ + O‘t%in _ (ai + aﬁiﬁ>9/2
2 2 )

(qi - aéin)g

3ap + Sogaiin + Sugdmin + 39min

average maximum and minimum resultant angles,

plane (sketch (a)).

Values for Cmaz’ s and oyip from several

flights are fitted by a least-squares procedure
using as many terms of equation (9) as desired (a
computer program has been written to accomplish
this systematically (ref. 11)), and the resulting
coefficients Do, P1;, P2, = ¢+ +, etc., are deter-
mined. These coefficients then produce an expres-
sion for Cp versus a. A method is also available
to determine nonlinear results for the dynamic-
stability parameter (ref. 12). It has been the
author's experience, however, that the quasi-
linear values for dynamic stability cannot be
determined accurately enough to define the
nonlinear contribution.
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Rotation of Orthogonal Coordinate System

One of the assumptions necessary in the derivation of equation (U4) is
that angular displacements are small and that the resultant angle of attack is
simply the square root of the sum of the squares of the pitch and yaw angles:

ag = Jo2 + p2 (10)

The exact expression for the resultant angle of attack is

Gg = tan”* Jtan? o + tan® B (11)

These two equations agree closely for small angles. They agree exactly if «
or B equals zero. Thus, the error introduced by equation (10) can be reduced
for nearly planar motions by rotating the coordinate axes through an angle @
so that the motion occurs near either the pitch plane or the yaw plane, thus
keeping the angles in the other plane small (see fig. 2). The procedure for
rotating the data is described in detail in appendix D.

8— a £ The error due to use of equa-
/ tion (10) for large-amplitude motions

] is most pronounced in the dynamic-
6— // stability parameter £. Figure 3

(reproduced from ref. 13) demonstrates

) the magnitude of errors encountered for
4— 4 a typlcal case. We consider a test in
a range having 11 data stations at

/

/ 4 — O

PA | ‘
>m =0.0006/ft

&=45°

O aymg =20°
0 arms =30°
& Arms = 40°

sl | | | -e :

B, deg &

Figure 2.~ Rotation of coordinate axes. Figure 3.- Effect of resultant angle assumption
on dynamic stability parameter.



4-foot intervals with test conditions such that pA/2m = 0.0006/ft and the
wavelength of oscillatory motion is 26 feet. We consider various values of
oprmss P, and €. Figure 3 shows the induced error (¢ - Eexact) for @ = L45°
(the worst case) as a function of £ for three values of oppg. Note the
near linear dependence of the induced error on €, and also the strong

influence of adppg-

Lift

The lift-curve slope, Cl, is determined from swerve measurements (with
effects of gravity removed) in conjunction with the oscillatory motion of the
model. A modified form of Nicolaides' equation is fitted by the method of
least squares to the experimental displacement data =z and y. The equation
used is (see appendix C for derivation)

y+iz = - % {cLafO}i/;X(BHa)dxdx + (d)<ch+ CL&>[j;X(B+ ia)dx - (Bo+ioco)x:|

. 1+ ipx - e1PX )
+ (Cyg + 1CLg) < pp2 >}-+ (y& + 1z8)x + (yo + 1izo) (12)

The integrals are cobtained in closed form by integrating the tricyclic equa-
tion for B + ia using the coefficients solved for in the stability routine.

Therefore, the constants Clq, (CLq + CL&), Cyos CLo, yé, Vo zé, and zg
appear in a linear fashion, and a straightforward least-squares technique can

be used to determine them.

Although so far most data have been reduced only for linear 1lift coeffi-
cients, it is fairly straightforward to include suspected nonlinearities. For

example, if the 1ift curve can be approximated by
Cr, = CLa“ + CL2a9

one addi;ional term should be added to the right side of equation (12), namely
(ref. 13),

_&A_ X X a
_mcLzﬁ_L g + ia|® ax ax

The additional constant also appears linearly and can be solved for as before.

Corrections to Measured Angles for Flight-Path Curvature

Because the original angular measurements are made with respect to
earth-fixed axes and not to the actual flight path, a correction to the angular

10
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data may be required for the swerving of the trajectory as derived from the
first pass through the 1lift routine. Figure L4 shows the relationship of the
a=8-y, = 8 + tan™! SZ -z

-9z _
Slope *~ax - tan 7z

Mean flight path

Slope = z,

Actual flight path

7
Zmean £ ]

x \ {

(2) Vertical plane.

dy
- - -1
B==y+y, =-y+ton Ix

Sy
Slope = ax - tan Yy

Mean flight path

Slope = y,

(b) Horizontal plane.

Figure k.- Relationship of swerve corrections and
original measured angles in vertical and
horizontal planes.

swerve trajectory, flight-path angle, and measured angles in orthogonal planes.
A detailed description of angular corrections is outlined in appendix E. Once
this correction is made, the data are again cycled through the stability rou-

tine with the corrected measured angles, and this process of recyeling
continues until the swerve corrections to the angles remain essentially
constant.

Program Summary

When the individual routines are completed, a final tabulation of the
calculated angles and displacements along with the computation of the root-
mean-square angle of attack, dypg (necessary for representing the drag
coefficients), is made for a predetermined array of x values that can be
used for plotting and reference.

11



A typical procedure for reducing a free-flight run can be summarized as
follows (see fig. 5 for flow chart):

Raw data 1. Obtain measurements in earth-
l.- Film measurements fixed, orthogonal coordinates.
2.- Model characteristics
3.- Test conditions . .
2. Fit the x-t data with equa-
tion (1) and determine the drag coeffi-
Data in range Reduction to range cient. Check for bad time data with a
coordinates coordinates R A
%, ¥, 2, 8 w1 X, Y, 2, 6, ¥, 1 smoothing routine and recalculate the

| drag coefficient if necessary. With
il S time now given as a function of x,
DQiQQJ”WWF:ZJSmwmdma compute the vertical drop of the model
) due to gravity and modify the =z and @
measurements to eliminate its effect.

- Rotate
Stability coordinates

3. Use the 86, ¥, and x data in
the stability program to determine the
Lift I orientation angle (®) of the motion
with respect to the xy plane.

A?ﬁfﬁﬁﬁffJ Ik, Rotate the 6, ¥, z, and y

values through the angle @ so that
‘ the motion occurs as much as possible
Smooth data in the xy plane.

Figure 5.- Flow chart of data reduction procedure. 5. Rerun the 6, V¥, and x values
through the stability routine to obtain
the first set of calculations for the constants in equation (4).

6. Use the y, z, and x data in the lift program along with the computed
coefficients from the stability routine, and determine the constants in
equation (12).

T. With this set of constants from the 1lift program, one now has expres-
sions for =z versus x and y versus x, which can be differentiated with respect
to x to obtain corrections to 6 and ¥ and thus to estimate o and B.

8. With this new set of angles, the stability program is called again
and steps 5 through 7 are repeated until the computed angle corrections are
essentially constant. One then has the best fit to the actual oscillatory
history with respect to the flight path.

9. At this point the a, B, z, and y data may be checked for data points
that appear to be incorrect (appendix F). If any are found, the values are
replaced by calculated values and the process of iteration between stability
and 1ift routines is repeated as before.

10. All measured and calculated values for a, B, z, and y are finally
rerotated to the original axis system of reference.

12



The program offers a degree of flexibility to the user; that is, some of
the procedures can be done independently of the others, such as the drag rou-
tine. The rotation and swerve correction routines are optional as well as the
smoothing routines for eliminating bad data. The 1lift routine can be run inde-
pendently if one provides the necessary coefficients from the stability analy-
sis of the angular motion. The computing time to reduce one run or run segment
is typically 0.5 min on an IBM 7094. Other minor but very convenient (and
sometimes necessary) features can be utilized with the program. Additional
details of the program are available on request. (Write to Ames Research
Center, NASA, Code SVH, Moffett Field, Califormia 94035).

L 49004 COMPARISON OF FREE-FLIGHT
o . AND WIND-TUNNEL
0362 d l | 2::;«1 1.702d ] RESUTTS
g !
//:;;T%Kmd"w - o g 16004 Tests were conducted at
0.300d—" B 108 _J_ a Mach number of 2.0 and a
Lo7004 4500d7““7-~\~ ] Reynolds number of 1.7 million
e 1950 d — = 40004 in the Ames Pressurized Bal-
d=1.28"  Jligtic Range with the AGARD
Center of moment 2050 d—s] standard hypersonic ballistic
i correlation model HB-2 (see
N S fig. 6). Where possible, the
(a) Configuration. results are compared with
results obtained in a conven-
L= 6125 — tional wind tunnel (refs. 1
2438———1 and 2) and with results from
1.389 —=] —__—T' ballistic-range tests
/////' i — (ref. 1k4).
- pmw o 125 _ —] 2.000
\\\\\A padi — The two types of models
' —

S— used in the Ames tests are
\—Bronze nose —w shown in figure 6(b). The
Lexan base

Tirst set of models was solid
in construction and was made

Solid model
Note: All dimensions in inches of phosphor bronze and a

e 6.125 polycarbonate-type plastic

2 438 687 2,000 (Lexan). A second set o?
models of the same materials

1.469 Hollow

| = was constructed to have a

NﬁTTTﬂTﬂ“_‘r‘JL'T’ - smaller mags an@ t?ansverse
! 2000 moment of inertia in an unsuc-

g ers !

Ay _E?_J cessful attempt at obtaining
high angles of attack. This
set of models had a hollowed
flare and cylinder section as

Hollow model shown. Two pins were mounted

~——

l‘lb——‘

(b) Two types of models.

Figure 6.- Sketch of model.
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in the base of both sets of models to permit the measurement of roll in flight;
therefore, the roll rate was a fixed input to the data-reduction program.

The data used for comparison with wind-tunnel results will be that
obtained from the solid models. (The data for all the tests are given in
table I.) To reduce the effects of aerodynamic nonlinearities with angle of
attack, the data were analyzed with all flights split into overlapping segments
of approximately 1—1/2 cycles of motion with three amplitude peaks. TFigure T
shows a typical set of position, time, and angle data for the present tests.
Figure 7(a) shows the flight time as a function of distance and the resulting
velocity decrease over the length of the range. Figures 7(b) and (c) show the
displacement and angular measurements (z and & were corrected for gravity).

08—

06—

t, sec

04}

or o

2400

2200

V, ft/sec

) 40 80 120 160 200

X, ft

(a) Time and velocity vs. distance.

Figure 7.- Typical flight data.
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40 80 120 160 200 o] 40 80 120 160 200
X, ft X, ft

(b) Displacement vs. distance. (c) Angular measurements vs. distance.

Figure T.- Concluded.

Estimate of Error

A method for computing the effects of random errors on the various aero-
dynamic parameters measured in a ballistic range is outlined in reference 13.
With the equations contained therein, estimates of the standard deviation in
the respective parameters due to experimental error were made assuming a uni-
form error distribution with maximum random errors in the measured data of
(e, B) = £0.2°, (x,y,x) = *0.001 ft, and (t) = *1X107° sec.

a = 2° o« = 6°
sp(Cp) +0.005 *0.005
SD(CLQ) .3 .1
sn(cqu) %.009 +.003
sD(&) +.6 *.2

15



Drag

1.6— The total drag coefficient as a
function of angle of agttack is showm in
figure 8.2 Each data point was obtained
by analyzing a flight (or portion of
flight) as already outlined. These

c i . data points were then fitted by a qua-

° Cp=1239+ 000249 o dratic equation in angle of attack by
the method of least squares. One imme-
diately notices the significant differ-

~—— Ames total drag

— ﬁggg ;ofuL ddrcg A ence between the present ballistic-range
-Z[-[bas Sgood drag plus Ames-deduced 1051t and AEDC wind-tunnel results.
a5 2 ‘,{ é é The total drag for the wind-tunnel
a,deg regults was obtained by combining the

contributions of forebody and base drag
measurements given In reference 1. It
was felt that the discrepancy could be
in the wind-tunnel base pressure meggurements since sting effects on these mea-
surements have been shown to be significant. In reference 15, the effect of
sting size on base pressure measurements for a 15° half-angle cone was investi-
gated. Three different ratios of sting diameter to model base diameter were
i‘avestigated and the results were compared with the measurements obtained for
"no sting"” on a free-flight model with a pressure transducer coupled to an FM
telemetry system. This investigation revealed that for sting-to-model-diameter
ratios as low as 0.3, as was used in the ABDC tests of the AGARD model, the
base pressure measurements could be as much as TO percent too high, thereby
producing a lower total drag coefficient. In view of these facts, then, it
was decided to attempt to deduce the base pressure on the present free-flight
models from shadowgraphs of the model in flight. An orthogonal set of shadow-
: The TS = : graphs was selected from
each of the four flights
¢ with an angle of attack
. of approximately zero in
each plane of view. A
typical shadowgraph is
shown in figure 9.3 The
expansion of the flow
around the base and the
wake are well defined.
i If one measures the Mach
Y angle between the final
Mach line at the corner
of the base and the
L D~ i dividing streamline
Figure 9. Shadowgraph of model; M = 2.06, R = 1.85x106. defining the outer edge

Figure 8.- Variation of drag coefficient with
angle of attack.

“Most of the scatter in the data points can be attribubted to slight dif-
ferences in Mach number. In table I, the drag coefficient increases slightly
with a decrease Iin Mach number for a given range of dypyg-

SThe intense shock vattern shown on the last half inch of the model is

the area where the sabot gripped the model.
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of the wake, the Mach number of the flow along the wake can be determined and,
consequently, the ratio of static-to-total pressure in the wake (and on the
base) is known. The total pressure behind the normal shock at the nose is
assumed to be constant everywhere on the body and, as a result, the ratio of
static pressure at the base to free-gtream pressure is known. The base drag
can then be calculated. The calculated values from all four flights were aver-
aged and added to the AEDC forebody drag; the shaded curve shown in figure 8

is the result. The total deviation from the average base drag is indicated by
the shaded error band. The agreement with the free-flight total drag is now
excellent.

Lift

The lift-curve slope, as deduced from the swerving motion of the model,
is shown in figure 10. These data indicate that the 1ift coefficient is lin-

4 _aenc ear with angle of attack at least to T°.
/ ° The wind-tunnel result for lift-curve
o é’ lePe, ag deduced from the.normal and.
Cig. Per <_ﬁ§mz?ﬂ|Am% \\_ axial force measurements, is shown,
radion 31— se crag Cqo=340 together with a value cbtained using

the Ames deduced base pressure in the
axial force contribution. The agree-
2l | | I | ment between free-flight and wind-tunnel
° 2 results is very good.

4
am, deg

Figure 10.- Lift-curve slope.

61— 4 Normal Force
Ames //
— — AEDC y
——— CARDE / A curve of normal force versus
//// angle of attack was calculated from the
4= . measured 1ift and drag data where
/ CL = 3.400 and Cp = 1.239 + 0.00249¢2
N 7 and CN = CI, cos o + CD sin «. The
o //// results are plotted in figure 11 and
7 are compared with AEDC wind-tunnel data
and with CARDE ballistic-range data
| | | | (ref. 1k).
o 2 4 6 8
a, deg

Pitching Moment

Figure 11.- Variation of normal-force coefficient
with angle of attack.
The nonlinear pitching-moment-

coefficient curve was calculated with the method of reference 9, with linear
and cubic terms in angle of attack chosen as most representative of the data.
(Higher order polynomials were examined, but were nearly identical to the
simpler linear-cubic representation.) One flight at low amplitude (ay = 1.8°)
revealed a significant decrease in static stability (see table I, run 1156),
which is reflected in the lower initial slope of the pitching-moment curve in
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Figure 12.- Variation of pitching-moment
coefficient with angle of attack.
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(a) Dynamic stability parameter.
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(e) Lift due to pitching and plunging.

Figure 13.- Variation of dynamic aerodynamic
coefficients with angle of attack.
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figure 12. Curves from AEDC and CARDE
are also shown and indicate slightly
higher values for the pitching moment.
Small differences in boundary-layer
conditions and base pressure could
contribute to the discrepancy.

Dynamic Stability

The dynamic-stability parameter
for nonpowered flight at constant alti-

tude, § = Cp - Cr + (d/d)g(cmq + Cm&);

is shown in figure 13(a) and the result-
ing values for (Cmq + Cm&) in fig-

ure 13(b). The value of (Cmy + Cmy)

obtained in conventional wind-tunnel
tests (ref. 2) is slightly lower than
free-flight results. The dynamic con-
tribution to 1lift due to pitching and
plunging (CLCl + Crg), which can also be
considered as the contribution to
damping in pitch due to lift (other
major contributions would be center-of-
pressure movement or changes in drag
due to angular rates), is shown in fig-
ure 13(e). To the author's knowledge,
this is the first fairly consistent set
of data obtained for (Cr,, + CLe) in a

o] o
ballistic range.

Effects of Hollow-Base Models

While, as noted earlier, the
attempt to obtain higher angles of
attack by reducing the mass and trans-
verse moment of inertia of the models
was not successful, the data from this
set of tests revealed some interesting
results. Figure 14 shows the drag
coefficient for both solid and hollow-
base models. Although some of the
scatter in the data for each model type
can be attributed to slight Mach number
effects, the hollow-base models had a
slightly lower overall drag coefficient
than the solid models. The reason for
the lower drag is not known but may be
due to subtle boundary-layer differences
or effects of the hollow base or both.



Co 12f~ O nE?@E

@ Solid models
0O Hollow models

a, deg

Figure 14.- Drag measurements for solid and
hollow-base models.

sl | | | |

o 2 4 6 8

Data for the other aserodynamic param-
eters for the hollow models were very
similar to data for the solid models
except that there seemed to be more
scatter. It is possible that the open-
base creates a ''sloshing" effect of the
air movement in that vicinity and may
introduce slight differences in the
forces and moments. It should be
pointed out that an open-base model was
ugsed in the CARDE tests, but the enve-
lope of oscillatory motion for the
tests never reached below approximately

7° and therefore might not be sensitive to these effects. Model base geometry
should be carefully considered in the design of models for tests at subsonic
and moderate supersonic Mach numbers at which base pressure is comparable to
the free-stream pressure and the base forces are comparable to forebody forces.

Ames Research Center

National Aeronautics and Space Administration
Moffett Field, Calif. 94035, May 16, 1968

124-07-02-35-00-21
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APPENDIX A
DRAG COEFFICIENT AND GRAVITY CORRECTION SUBROUTINE

The purpose of this subroutine is twofold. First, it obtains a least-
squares fit of the drag equation to a set of measurements of distance flown as
a function of time to deduce a drag coefficient. Second, the drag equation is
then used to calculate corrections to the displacement and angle measurements
in the vertical plane to obtain a zero gravity trajectory.

Drag

The equation of motion along the flight path is

g; D—-p—CD<> (A1)

where D 1is the drag and s 1s the distance traveled by the model center of
gravity. The present analysis is based on the following assumptions:

1. The distance s can be replaced by x, the distance along the earth-
fixed axis in the direction of flight. This assumption is very good since the
lateral motion is small compared to the motion in the x direction.

2. The air density, p, the model mass, m, the reference area, A, and the
drag coefficient, Cp, are constant.t

With these assumptions and the initial conditions t = %ty and V=V, at
= 0 the solution to equation (Al) is

t—to—voKCD+VoKCD (A2
where X = pA/2m and the subscript o denotes initial conditions.
To obtain a least-squares fit to the x and t data, we write
equation (A2) as
t = Ae™® 4+ B (A3)

11n most tests the veloc1ty lossg durlng fllght is small hence, changes
in drag coefficient because of diminishing Reynolds number or Mach number may
usually be neglected. (This may not be true in transonic tests or, to a small
degree, in the present tests.) In most cases, however, the drag coefficient
is a strong function of angle of attack. This point is considered in the text
and a method for determining the variation with angle of attack is given.
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where

1
A= VoKCp
1
B =1ty -
°©  VKCp
Cc = KCD

We will now set up the least-squares procedure. The sum of the squares
of the residuals, SSR, is written

N
SSR = Z (texp; - t1)2 Wy (AL)

1=1

where texpi 1s the experimentally determined time at the ith position, ti
is the calculated time, Wi is a weighting factor, and the summation extends
over all positions N. (The normsl mode is to operate with a Wi of 1; how-
ever, one can use O as a mechanism for rejecting erroneous data points.)
Substituting equation (A3) into (Ak4) yields

N
SSR = z (texp; - Ae%¥i - )2 Wy (A5)
i:

1

The normal least-squares procedure would be to form the partial derivatives of
equation (A5) with respect to A, B, and C and set them equal to zero, and
solve for A, B, and C. This works as long as the partial derivatives are
linear in the unknown coefficients, but it does not work here because C
appears in an exponent. Hence, we will proceed as follows: Form the partials
with respect to A and B and set them equal to zero, yielding

N

BgiR - e Z Wi (texpy - AeT - B)e™ = 0 (a6)
i=1

5 N

OSSR _ _ o ACXL -

5 - 2 Z wi(te@1 Ae B) =0 (AT)
i=1

Using equations (A6) and (A7) eliminate A and B from equation (A5) to yield
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GoR - i oo, * <Z Wi> (Z wit?xpiecxi> - <Z Wite;cpj> <Z wieri> .
i=1 i <Z wieri> ) <Z Wi> <Z Wie2cxi>

| @) (B rsten ™) - (Ersem) (E )

(Z ) - (T ) (2w )

We now have an equation in C only. At this point, a differential correction
procedure (ref. 13) could be used, but the partial derivative with respect to
¢ would be quite complicated. Therefore, a numerical procedure 1s used to
minimize the SSR as follows: An approximate solution for Cp and hence C
is found (to be discussed in the next paragraph), and equation (A8) is evalu-
ated. Then the value of Cp is increased by € (e.g., € = 0.1 Cp) and equa-
tion (A8) is reevaluated. If the B8SR is smaller than the first value, Cp

is increased by € again, continuing until the minimum in SSR 1is passed, at
which point the size of € 1s reduced by one-half and Cp decreased by €.
This process is repeated until the minimum is passed again, at which point €
is again reduced by one-half and Cp increased by €. This process is
repeated until Cp changes less than some prescribed amount. Normally, a
value of 1 percent of the last value of Cp obtained is used. If, by chance,
the Tirst step had produced an increase in SSR, the direction would have been
changed. ZEquation (A8) is evaluated to find SSR in double-precision
arithmetic to insure accurate determination of the minimum.

(A8)

The starting solution for the above lteration procedure is found by uti-
lizing the small-velocity-loss criterion, that is, small KCpx, and expanding
the exponential in equation (A3) to order x© to obtain

=2

t=(A+B)+ACx+A—g—x2 (A9)

or

t = A + Bx + Cx° (A10)

By least-squares fitting equation (A10) to the x - t data, values of K, E,
and C and, hence, Cp are obtained. The least-squares fitting of (A10) is
straightforward since all three unknowns appear in a linear manner.
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Gravity Corrections

After convergence of the drag routine, gravity corrections can be calcu-
lated. The new vertical position becomes

1
Znj T Zexpi T 5 gtf (A11)

where zp; 1is the new z at the ith position and Zexpi 18 the experimen-
tally determined 2z at the dith position, and the curvature of the flight
path due to gravity is

dz| _ gti
dxti = Vi (A12)
Hence, the new angular coordinate is
- -1 4z
On; = Oexp; + tan™T N (A13)

At this point we may elect to check for erroneous data points as follows:
The standard deviation of the time measurements is calculated from the SSR

sp(t) = /%3 (A1k)

Now the difference between the experimental and the calculated time from the
least-squares fit is compared to SD(t). If the absolute value of this dif-
ference exceeds a chosen multiple of SD(t) (normally taken as 2), the data
point is deleted from the set of data. When all data points have been checked,
the least-squares procedure is repeated if points were deleted; if points were
not deleted, the procedure is finished. When data points are deleted, a
statement to this effect is printed in the output.
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APPENDIX B
MODIFIED TRICYCLIC EQUATIONS

Nicolaides' differential equation of motion using trajectory-oriented
forces rather than body-oriented forces can be expressed in time coordinates

as follows:
£ v (5 o+ (3 (o # ) + 2 5 ong, + (8 (omns - o)}

B Ix) ¢ pAd , B DIxpp/ pd .
+1V1y>§+vz['21y<cma+l VCmPor,>+VIy2m i chpm'chOL)]g

- q(e)etf® o (B1)
where § = B + ic and mo< = Iy. If we change to x coordinates
£ =5t (2)
F=utr 43 agtl_..g, +igd%%
=560+ 23" (83)

Note that

b
"
<

n

A
& v2(-cry - op)

where Y = Ty - 172' is the local flight-path angle (angle between the local

velocity vector and the x axis of the range). (See fig. 4.) For small 7,

as is the case in a ballistic range where the velocity vector is nearly paral-
lel to the x axis, the CLy term can be neglected. Substituting for =x

and ¥ into equations (B2) and (B3) yields

£ =ver (B2a)
.g. = V2 <§u _ gl 92;% CD> (B3a)
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Also,

p(t) = Vp(x) (BY4)

Substituting equations (B2a), (B3a), and (BL4) for (Bl) yields

I
gn {gﬁ g + i _ [CLPQ, <> <mp. - Cmp()} + ip I_§} gl
pAd -
+ l: 2Iy Cmg, + 1PdePC(,> + p = Iy 2m< pdC ]'_,pa - iCy, >:} C Qe X (35)
where

2
£ =Cp - CL, + <%> <Cmq + Cm&>

Differential equation (B5) can be written as

¢ - (1 + @2)6" + @apat = Ks(ps - 91) (93 - @2)e®3

which has the solution (see sketch (b))

£ o= Kleq)lx + ngq)zx + Ksecpsx (B6)

where
at x=0 P1 = M1 + 1wy
Pz = M2 - 1wz
®3 = 1ip
Ki = b1 + iaz
8 Ko = b + ias
Sketch (b) Kz = ba + iag
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Note then that
=L 4y Ix
@l+@2“2m§+1{pd2m[cl@q+<c> Cmpe, ™ Cmp )| TP I,
= ———pAd 1l ..Iic. .% 1
P2P2 2Iy CmOL + lpdePcc> +P Iy 2m <—pdCLPoc - lCL@)

Ka(ps - 91)(ps - 92) = Q
Also,

PrtPz = N1 + M2 + i(wy - wp)

P1P2 = Mafe + Wiwe + i(Mowy ~ Naws)
Therefore,

M1+ M2 = 5 £

w_w—d.pﬁc +i2 I_X
1 w2 = Py | Ypg, T \g) \Tpe T Ompg)| TP I,

NNz + Wiz = =57~ Cp - P7d Iy om .
W Wo = — — C d. pad c
TN=oWa MiWs = =P Iy om LU; P EIy mpa
If one neglects Magnus forces and moments and if nimz << wWiws, then

1 + M2
PA
2m

g:

wl_w2=:p:[y

i
©
=
oY

and from equation (B10O)
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However, the calculated values for ni, M2, Wi, and Wz are not precise enough
to obtain accurate values of C(CL,. A value for ClL, is determined much more
accurately from the plunging motion. Once a value of CLg 1s obtained, it
can then be used to determine 717z as a function of 13, Wi, and Wz from
equations (B8a) and (B10a). Therefore,

pA w pA
Nz = (ﬁl + o Clg 5% " 5 Clg (811)

When p is known from experimental measurements, then

) W P Ix
2 = W1 - S
Iy
consequently,
Iy
1 P+
pA Iy pA
2 = <ﬁ1 + 5 CL%) Wy " om CLg (B12)

and wWwp and mMp would be functions only of wi; and 713, and the values of D
and CLa'

The experimental data for o and B are fitted with the tricyclic equa-
tion (eq. B6)) by a least-squares procedure using the method of differential
corrections (ref. 8). To initiate this procedure, starting values for the
unknown coefficients must be provided. This is accomplished by using a
modification of Prony's method (ref. 16), which will be described next.

The following theorem is fundamental to Prony's method: If

3

(B + ia)y = }: Kje@JXZ (B13)

J=1
where x = X1, X2, * * - Xp (x locations of equally spaced points, Ax apart)
and 1=1,2, - - - n (n = number of points (B + ia)). Then B + ia satis-

fies the linear difference equation

(B + dia)qyq + Q2(B + 1a) g, + Qu(B + dia)y,; + Qo(B + da)y = O

(B13a)

where Q are constants such that the roots of
h® + Qoh® + Qih + Qo = O (B1k)
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are

We have thus minimized
2
E:[(B +da),, o+ Q2B+ i), o+ Qu(B + i), + Qo(B + ia)z}

instead of

2
}:[(B 10 cpsurea T (B * iOL)calculated]

which means simply that the coefficients derived from the procedure are not
the best possible coefficients but are very good first approximations. To
obtain values for the coefficients Kj and ¢j the following steps would
normally be taken: Solve the following set of equations by the method of
least squares for Qz, Qi, and Qo. (See eq. (Bl3a).)

(B + ia)e + Q2B + 1a)s + Q1(B + ia)s + Qo(B + ia)1 = O
(B + ia)s + Q2B + ia)e + Qu(B + ia)s + Qo(B + ia)s = O
=0

(B + ia) + Qo(B + ia) _ + QB + ia) _ +Qy(B + ia) __
With Qo, Qi, and Qo known, solve the cubic equation

h® + Qb + Q1h + Qo = O

for roots hi, hp, and ha where

hy; = eCPJ_AX
ho = Paix
hg = eP3X
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Therefore, by solving for @i, 2, and @3 and then substituting them into
equation (Bl3), one can do a second least-squares operation to obtain Ki, Ko,
and Kz. However, since @3 is not independent of ©3 and @o for the tricy-
clic equation in gquestion (i.e., p = (w1, wz) 2 glp1, ¢2)), a slight
modification is used. The procedure is:

Assume initially that ¢z = O and thus hs = e® = 1. Therefore

(B + i(I,) = K;Leq)lxZ + ngcpgxz + Ka
A

and h® + Q2h® + Q1h + Qo = O has unity as a root so that 1 + Qo + Q; + Qo = O.
If Qo is eliminated between this equation and equation (Bl3a),

[(B +ia), - (B+ ia)z] Qz + [(B +ia),, . - (B + ion)z] Qu
= (B +ia), - (B+ i) e

This equation is now solved by least squares for the coefficients Qi and Qo.

é?ﬂb< Polx

The exponentials and e are now found to be the roots of

h® + (Qz2 + 1)h + (QL + Q2 + 1) =0

50, from
h]_ = e(P]_AX
he = Pabx

the values of @1 and @2 are found from which ¢z 1is calculated; the process
is repeated with a new ¢z until the coefficients remain essentially constant.

The coefficient éijl of Kj in equation (Bl3) is tabulated for each
J since ¢@j 1s known. Therefore, Kj can be found by a second least-squares
procedure.

The values of o and B provided for this routine are either computed
internally directly from the raw angle data with a table look-up-and-
interpolation scheme or are input directly with constant increments of
distance.

29



APPENDIX C
LIFT EQUATIONS

If Magnus terms are neglected and if trajectory rather than body-oriented
force coefficients are used, Nicolaides' equation for 1lift can be written as

[X) YL A N b « ® d- . il t
v 4 1% = - %ﬁ V2 [CLQ(B + i) + <9Lq + CLé> (B + i) v (?YC + 1CL€> 1P
+ Cp(7y - 172)] (c1)
[x] o pA 2 ¥
y+it = -5V [c + cp(ry - i7z)] (cla)

where 7y and 7, are the projections of the local flight-path angle 7 into
the y-x and z-x ©planes, respectively, and 2z and o data have been corrected
for gravity effects. Transforming equation (Cl) into x coordinates yields

v+ iz = x(y' + iz') (c2)
¥+ 1% = ®(y' + iz') + % gﬁzﬁa%—izll
¥+ i% = ¥(y' + iz') + 2=(y" + iz") (c3)
Note that
x=2V

. pA
sz[‘CL(7y ~ iyz) - Cpl , <F = om

n

Substituting for % and ¥ into equations (C2) and (C3) yields

v+ iz = V(y' + iz") (c2a)

+

e

N3
I

kve[-cr(7y - irz) - CDI(y' + iz') + VE(y" + iz") (c3a)

If equation (C3a) is substituted into (Cla) with
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y! 4+ izt = Ty - i7g
the result is
y' o+ iz = Kepll - (7y - 175)%]

For small 7, as is the case for ballistic range tests, terms of the order 7e
can be neglected. Then

y' + iz" = -KCp,

y" + iZ"

K I:CLC(,(B + iq) + <ch + CL&> (B' + ia')d + <cyo + iCLO> eipx]
(ck)

After integrating twice with respect to x we obtain

. _ 10X X X
v+ iz = K Kcyo + iCLO> <1 + legg elp > + CLaf f (B + ia)dx dx
o] (@]

+ (a) <0Lq_ + CL&) Lx (B + ia)ax - (a) CLq + CL&> (By + ia,o)x}

+ (v + dizd)x + (yo + 12,) (c5)

The integrals are obtained in closed form from the expression for
B+ ia = K1P1X + KoeP2X 4 K,eP3X, Once the stability routine has been used
the only unknowns are Cy,, CL,s CLys (CLq + CL&), ¥4, 28, Yo, and zo and

these appear in a linear fashion and can be found by a straightforward
least-squares procedure on the experimental y and z data.
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APPENDIX D
ROTATION OF COORDINATES

The purpose of this subroutine is to reduce errors from the small-angle
aggumption inherent in the tricyclic method by rotating the coordinates so
that the maximum resultant angle of attack falls in either the pitch or yaw
plane. This is accomplished as follows: After the original gravity-corrected
angle data have been curve fit (stability subroutine), that solution is exam-
ined to find the maximum resultant angle of attack that occurs nearest the
middle of the flight. When it is found, the rotation angle required to bring
that resultant angle to the yaw plane is determined.

The experimental 6, ¥, y, and z data are then rotated about the x axis
through this angle. If the model is rolling rapidly, the peaks of the motion
will be precessing, and this rotation of coordinates may fail to accomplish
the stated purpose since successive peaks in the resultant angle of attack
will not remain in the B plane.

The angle of rotation, @, and the data in the rotated system are printed
out for reference. The angle, ¢, 1s retained so that when all other parts of
the data reduction are completed, all information, both data and results, is
transformed back to the original reference system.
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APPENDIX E
SWERVE CORRECTIONS

The purpose of this subroutine is to correct the flight-path angles «
and B to account for swerve of the model. The relations between the earth-
fixed angles € and ¥ and the flight-path angles o and B are

J_dZ

8 + tan” ax (E1)

Q
Il

B = -¥ + tan™% %ﬁ (E2)

The procedure for obtaining dz/dx and dy/dx, since they are not known
a priori, is as follows: First, since they are small, they are assumed equal
to zero initially and the angle data and swerve data are curve fit (stability
and 1ift subroutines). Second, after the initial curve fit to the y and 2z
data (1ift routine) is obtained, dz/dx and dy/dx are computed at each data
station and new angles a and B are determined. We now recycle through the
stability and 1lift routines to obtain new curve fits. From this new curve fit
to the y and z data, new dz/dx and dy/dx are computed. These are compared
with the previous set of corrections and if the difference between successive
corrections is greater than some input factor, say 0.005°, we again recycle
through the stability and 1ift subroutines. This continues until all
corrections are less than 0.005°, at which point the solution is complete.
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APPENDIX F
ADDITIONAL FEATURES OF THE PROGRAM

Dividing Tests Into Segments

A provigion is available for dividing a given set of flight data into as
many segments of any practical length as desired and treating each segment
separately. This becomes desirable if the model experiences large velocity
losses over the length of the range and if the aerodynamics are sensitive to
changes in Mach number or Reynolds number. It may also be desirable for models
that have nonlinear aerodynamics with angle of attack and whose maximum ampli-
tudes change significantly over the length of the range. By analyzing seg-
ments of such a flight, it is possible to define the variation of aerodynamic
coefficients with angle of attack from a single test (provided enough data are
collected to define the motion in each segment).

Smoothing Procedure

There is a smoothing procedure that can be used in conjunction with the
stability and lift routines. Once the iterative scheme involving stability
and 1ift has converged (that is, when the angle corrections due to swerve are
essentially constant), the differences between the experimental and calculated
values of «, B, y, and z are examined at each data station. If any are
found to be larger than some chosen multiple of the standard deviation of the
fit in question, then that experimental value is replaced by the calculated
value and the reduction process for stability and 1ift is repeated. The
smoothing process serves two purposes: (1) It tells the experimenter whether
some data appear to be In error in comparison to the rest; and (2) by repeat-
ing the calculation it shows him what effect this "bad" data had on the
derived answers. He can then either check his raw data inputs and resubmit
the run or conclude that its effect is small enough to ignore. The number of
times the data are smoothed is determined by the user, usually two or three
times maximum. If it is done too many times, there is some danger of '"walking"
the least-squares curves in the direction of the replaced values which could
lead to erroneous results.

Partially Missing Data

A provision in the program for weighting the input data (6, ¥, vy, z) from
0O to 1 enables one to place the proper emphasis on each meagsurement. This is
particularly useful if, at some data station, part of the measured data are
either poorly defined or missing (for instance, angular measurement is missing
in the vertical plane but not in the horizontal). If the data were missing, a
weighting factor of O would be used (if the data are good, a weighting factor
of 1 is automatic). If the data were somewhat uncertain but necessary to
obtain results, a weighting factor between O and 1, say, 0.5, could be used.
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TABLE I.- TEST DATA

Test

RX107®

v,
ft/sec

Cp

CLOL

Ty

g Cmq + Cm& CLq + CL&

b,
deg/Tt

Ymin

(a)

[d = 1.25 in., m 2 0.0229 slug, xcg = 1.95

Solid models
d, Iy = 6.2x107* slug-ftZ, Ix

~

3.5X107° slug-ft2]

1155-1(1.93 | 1.67 2177 | 1.308|3.49|-1.490|-16.6 -35.8 16.4 -0.29 | 6.97 |0.69 |5.17
1155-2(1.87 | 1.62 2108 | 1.321|3.38|-1.429|-18.2 -39.8 14,7 -.29 | 5.72 | .53 |4.12
1156 [1.96{1.71 221k | 1.239(3.59|-1.259|-19.1 -41.5 12.2 -.35 | 1.80 | .17 |1.28
1159-1(2.02 | 1.80 22hg | 1.249(3.36(-1.490]-15.8 -34.0 18.5 -.30 | .79 | .11 |3.55
1159-2(1.95 | 1.7k 2172 | 1.257(3.35|-1.k426] -18.6 -40.9 33.1 -.30 | 3.86 | .09 |2.74
1160-1[1.99 | 1.77 2234 | 1.279(3.31|-1.495|-17.5 -38.3 b1 -2k | 6,84 .41 |5.00
1160-2|1.93 [ 1.71 2161 | 1.284(3.31[-1.416]-19.6 -43.6 25.8 -2k 1 557 | .3213.88
(b) Hollow models

[d 21.25 in.,

m = 0,0141 slug, Xcg

= 1.9

~

2.1X107° slug-ft2]

1197

1199-1
1199-2
1199-3
1200-1
1200-2
1200-3
1203-1
1203-2
1203-3
1203-4
120k-1
1204-2
1204-3
120k-4

2.06
1.86
1.80
1.73
1.99
1.92
1.82
2.07
2.01
1.93
1.86
2.08
2.03
1.95
1.87

1.77
1.36
1.31
1.26
1.71
1.65
1.56
1.86
1.81
1.74
1.67
1.86
1.80
1.7k
1.67

2326
2084
2014
1939
2054
2169
2056
2300
224o
2150
2068
2330
2265
2181
2092

.236
.2kg
.269
.292
.228
.2L6
.260
.181
.192
.215
.234
.161
179
.201
.225

HFRHFRFRHFRPEERER B

Wwwwwwwwwww N Hw
no
it

h,02

-1.517
-1.128
-1.151
-1.172
-1.220
-1.140
-1.028
-1.307
-1.288
-1.223
-1.247
-1.374
-1.296
-1.2kk
-1.125

d, Iy 2 2.3x107* slug-ft®, Iy

-23.6 -32.6 6.8
-21.k4 -29.7 6.5
-30.8 =443 20.7
-18.2 -2k, 9 19.6
-22.5 -31.1 5.8
-23.5 -32.5 23.9
-31.2 V-] 61.8
-27. -38.5 29.5
-31.3 -43.9 28.2
-26.6 -36.6 17.8
-30.0 -ho k4 17.0
-22.8 -31.5 13.4
24k -33.7 15.3
-2k 4 -33.9 52.7
-35.9 -50.5 123.2

-0.
J1h
b
b
.16
.16
AT
.20
.20
.20
.20
.01
.01
.01
01

09

744
o)
.84

FFEFMPDWERERWWMPDWNIEHED
o
\O

0.60
.08
.10
.23
L6
.33
27
.30
37
.50
.39
L
.38
.35
.48

5.27
1.80
1.19

.9
3.85
2.85
1.66
2.48
2.15
1.26

.85
2.18
1.69
1.25

.81
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